TEST REPORT

TEST NUMBER: 0247094

TEST METHOD CONDUCTED	ASTM E662 Smoke Density (Flaming) Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials also referenced as NFPA 258
-----------------------	---

	DESCRIPTION OF TEST SAMPLE	
IDENTIFICATION	Contra Wt	
CONSTRUCTION	Loop Pile	
BACKING	Woven Synthetic	V 17 - 17 - 17 - 17 - 17 - 17 - 17 - 17

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

	CON	DITIONS	
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE TESTING CONDITION	24 Hours at 140° F 24 Hours at 70° F and 50% Relative Humidity As Received		
FURNACE VOLTAGE CHAMBER TEMPERATURE TEST MODE	118 V 95° F Flaming	IRRADIANCE CHAMBER PRESSURE	2.5 watts/sq cm 3" H ₂ O

AVERAGE MAXIMUM DENSITY CORRECTE		FLAMING	211
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES			216
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	229.0	246.0	218.0
Time to Dm (minutes)	2.5	3.0	2.5
Clear Beam (Dc)	20.0	24.0	17.0
Corr. Max Density (Dmc)	209.0	222.0	201.0
Density at 1.5 minutes	73.0	89.0	68.0
Density at 4.0 minutes	215.0	224.0	209.0
Time to 90% Dm (minutes)	1.0	1.5	1.0
Specimen Weight (grams)	11.9	11.9	12.1

^{*} This sample PASSES the requirements of 450 or less.

APPROVED BY:

Day asbury

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the productlested. This report is provided for the exclusive use of the client to whom it is addressed It may be used in its entirety to gain product acceptance from duly constituted authorities. This report applies only to those samples testedand is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc. shall not be used under any circumstance in advertising to the general public

714 Glenwood Place

Dalton, GA 30721

706-226-3283

Fax: 706-226-6787

protest@optilink.us

TEST REPORT

DATE: 05-31-2018	Page 1 of 1	TEST NUMBER:	0247094
CLIENT	Egetaepper a/s		

TEST METHOD CONDUCTED	ASTM E662 Smoke Density (Non-Flaming) Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials also referenced as NFPA 258
-----------------------	---

	DESCRIPTION OF TEST SAMPLE	
IDENTIFICATION	Contra Wt	
CONSTRUCTION	Loop Pile	
BACKING	Woven Synthetic	

GENERAL PRINCIPLE

This procedure is designed to measure the specific optical density of smoke generated by the test specimen within a closed chamber. Each specimen is exposed to an electrically heated radiant-energy source positioned to provide a constant irradiance level of 2.5 watts/square cm on the specimen surface. Measurements are recorded through a photometric system employing a vertical beam of light and a photo detector positioned to detect the attenuation of light transmittance caused by smoke accumulation within the chamber. The light transmittance measurements are used to calculate specific optical density, a quantitative value which can be factored to estimate the smoke potential of materials. Two burning conditions can be simulated by the test apparatus. The radiant heating in the absence of ignition is referred to as the Non-Flaming Mode. A flaming combustion in the presence of supporting radiation constitutes the Flaming Mode.

CONDITIONS			
PREDRYING OF TEST SAMPLE CONDITIONING OF TEST SAMPLE TESTING CONDITION	24 Hours at 140° F 24 Hours at 70° F and 50% Relative Humidity As Received		
FURNACE VOLTAGE CHAMBER TEMPERATURE TEST MODE	118 V 95° F Non-Flaming	IRRADIANCE CHAMBER PRESSURE	2.5 watts/sq cm 3" H ₂ O

AVERAGE MAXIMUM DENSITY CORRECTE	D (Dmc)	NON-FLAMING	137
AVERAGE SPECIFIC OPTICAL DENSITY AT 4.0 MINUTES			40
	Specimen 1	Specimen 2	Specimen 3
Maximum Density (Dm)	124.0	137.0	154.0
Time to Dm (minutes)	19.4	15.3	17.3
Clear Beam (Dc)	1.0	1.0	1.0
Corr. Max Density (Dmc)	123.0	136.0	153.0
Density at 1.5 minutes	2.0	2.0	2.0
Density at 4.0 minutes	32.0	39.0	50.0
Time to 90% Dm (minutes)	14.3	11.0	18.2
Specimen Weight (grams)	12.3	12.4	13.1

^{*} This sample PASSES the requirements of 450 or less.

APPROVED BY:

Gary asbury

This facility is accredited by the National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code 100297. This accreditation does not constitute an endorsement, certification, or approval by NIST or any agency of the United States Government for the productfested. This report is provided for the exclusive use of the client to whom it is addressed It may be used in its entrety to gain product acceptance from duly constituted authorities. This report applies only to those sample testedand is not necessarily indicative of apparently identical or similar products. This report, or the name of Professional Testing Laboratory, Inc. shall not be used under any circumstance in advertising to the general public.

714 Glenwood Place

Dalton, GA 30721

706-226-3283

Fax: 706-226-6787

protest@optilink.us